160
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Bhardwaj, J., Anand, A., & Nagarajan, S., (2012). Biochemical and biophysical changes
associated with magnetopriming in germinating cucumber seeds. Plant Physiol. Biochem.,
57, 67–73.
Bhatnagar, D., & Deb, A., (1978). Some effects of pre-germination exposure of wheat seeds
to magnetic flied. Seed Res., 6, 1–14.
Bilalis, D. J., Katsenios, N., Efthimiadou, A., & Karkanis, A., (2012). Pulsed electromagnetic
field: An organic compatible method to promote plant growth and yield in two corn types.
Electromagn. Biol. Med., 31(4), 333–343.
Blank, M., & Soo, L., (1996). The threshold for Na, K-ATPase stimulation by electromagnetic
fields. Bioelectrochem. Bioenerg., 40(1), 63–65.
Blum, A., (1993). Selection for sustained production in water‐deficit environments. Int. Crop
Sci. I., 343–347.
Bogatina, N., Verkin, B., & Kordyum, V., (1978). Effect of permanent magnetic fields with
different intensities on the wheat growth rate. Dokl. Akad. Nauk Ukr. SSR Ser. B., 4, 352–356.
Bolwell, G. P., & Wojtaszek, P., (1997). Mechanisms for the generation of reactive oxygen
species in plant defense–a broad perspective. Physiol. Mol. Plant Path., 51(6), 347–366.
Bondarenko, N., Rokhinson, E., Gak, E., & Klygina, L., (1996). Magnetic Equipment in
Agriculture (pp. 30–34). Russian agricultural sciences C/C of reports, Russian Academy of
Agricultural Sciences.
Braga, R. A., Azevedo, R. L. D., Guimarães, R. M., & Reis, L. V., (2020). Magnetic field in
coffee seed germination. Cienc. Agrotec., 44.
Cakmak, T., Cakmak, Z. E., Dumlupinar, R., & Tekinay, T., (2012). Analysis of apoplastic
and symplastic antioxidant system in shallot leaves: Impacts of weak static and electric
magnetic field. J. Plant Physiol., 169(11), 1066–1073.
Cakmak, T., Dumlupinar, R., & Erdal, S., (2010). Acceleration of germination and early
growth of wheat and bean seedlings grown under various magnetic field and osmotic
conditions. Bio ELectromagn., 31(2), 120–129.
Chen, K., Fessehaie, A., & Arora, R., (2012). Dehydrin metabolism is altered during seed
osmopriming and subsequent germination under chilling and desiccation in Spinacia
oleracea L. cv. Bloomsdale: Possible role in stress tolerance. Plant Sci., 183, 27–36.
Chen, Y. P., Li, R., & He, J. M., (2011). magnetic field can alleviate toxicological effect
induced by cadmium in mungbean seedlings. Ecotoxicol., 20(4), 760–769.
Collin, F., (2019). Chemical basis of reactive oxygen species reactivity and involvement in
neurodegenerative diseases. Int. J. Mol. Sci., 20(10), 2407.
Conrath, U., (2009). Priming of induced plant defense responses. Adv. Bot. Res., 51, 361–395.
Da Silva, J. A. T., & Dobránszki, J., (2016). Magnetic fields: How is plant growth and
development impacted? Protoplasma., 253(2), 231–248.
De Souza, A., Garcí, D., Sueiro, L., Gilart, F., Porras, E., & Licea, L., (2006). Pre‐sowing
magnetic treatments of tomato seeds increase the growth and yield of plants. Bio
ELectromagn., 27(4), 247–257.
De Souza, A., Sueiro, L., García, D., & Porras, E., (2010). Extremely low frequency non
uniform magnetic fields improve tomato seed germination and early seedling growth. Seed
Sci. Technol., 38(1), 61–72.
Dhawi, F., (2014). Why magnetic fields are used to enhance a plant’s growth and productivity?
Annu. Res. Rev. Biol., 4(6), 886–896.